Enhancement of Interconnectivity in the Channels of Pentacene Thin‐Film Transistors and Its Effect on Field‐Effect Mobility

Abstract
With the aim of improving the field‐effect mobility of transistors by promoting the interconnectivity of the grains in pentacene thin films, deposition conditions of the pentacene molecules using one‐step (total thickness of layer 50 nm: 0.1 Å s–1) and two‐step (first layer 10 nm: 0.1 Å s–1, second layer 40 nm: 4.0 Å s–1) depositions are controlled. Significantly, it is found that the continuities of the pentacene thin films vary with the deposition conditions of the pentacene molecules. Specifically, a smaller number of voids is observed at the interface for the two‐step deposition, which results in field‐effect mobilities as high as 1.2 cm2 V–1 s–1; these are higher by more than a factor of two than those of the pentacene films deposited in one step. This remarkable increase in field‐effect mobility is due in particular to the interconnectivity of the pentacene grains near the insulator substrate.