ON STRONG AND WEAK CHAOTIC PARTIAL SYNCHRONIZATION

Abstract
We study coupled nonlinear dynamical systems with chaotic behavior in the case when two or more (but not all) state variables synchronize, i.e. converge to each other asymptotically in time. It is shown that for symmetrical systems, such partial chaotic synchronization is usually only weak, whereas with nonsymmetrical coupling it can be strong in large parameter ranges. These facts are illustrated with systems of three coupled one-dimensional maps, for which a rich variety of different "partial chaotic synchronizing" phenomena takes place.

This publication has 19 references indexed in Scilit: