Wheeler-Einstein-Mach spacetimes
- 15 July 1981
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 24 (2) , 251-256
- https://doi.org/10.1103/physrevd.24.251
Abstract
We define the Wheeler-Einstein-Mach (WEM) spacetimes to be those which contain a closed Cauchy surface, are inextendible, and satisfy field equations with a well-posed Cauchy problem. We show that a WEM spacetime can be reconstructed from the "York data" on any given closed (constant mean curvature) hypersurface contained in that spacetime. This result is the strongest and most precise statement to date of Wheeler's version of Mach's principle. We discuss Machian and other properties of the WEM spacetimes.Keywords
This publication has 14 references indexed in Scilit:
- Existence of Incompressible Minimal Surfaces and the Topology of Three Dimensional Manifolds with Non-Negative Scalar CurvatureAnnals of Mathematics, 1979
- Dragging effect on the inertial frame and the contribution of matter to the gravitational "constant" in a closed cosmological model of the Brans-Dicke theoryPhysical Review D, 1979
- On the determination of Cauchy surfaces from intrinsic propertiesCommunications in Mathematical Physics, 1978
- Black holes in closed universesNature, 1977
- The effect of gravitational interaction on classical fields: A hamilton-dirac analysisAnnals of Physics, 1977
- The Large Scale Structure of Space-TimePublished by Cambridge University Press (CUP) ,1973
- Generally Covariant Integral Formulation of Einstein's Field EquationsPhysical Review B, 1969
- Mach's Principle and a Relativistic Theory of Gravitation. IIPhysical Review B, 1962
- Coriolis-Kräfte im Einstein-Kosmos und das Machsche PrinzipThe European Physical Journal A, 1961
- An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of GravitationReviews of Modern Physics, 1949