In vitro Uptake and Stability Study of pVEC and Its All-D Analog
- 14 January 2003
- journal article
- Published by Walter de Gruyter GmbH in Biological Chemistry
- Vol. 384 (3) , 387-93
- https://doi.org/10.1515/bc.2003.044
Abstract
A key step in the development of new hydrophilic pharmaceuticals is to get them through biological barriers. Cell-penetrating peptides, CPPs, have been shown previously to enter cells both in vitro and in vivo by a non-endocytotic mechanism and to be able to carry large cargo molecules with them. Recently, we showed that a small peptide, pVEC, from murine vascular endothelial cadherin, has the characteristics to be classified as a protein derived CPP. Here we have further investigated pVEC together with its all-D analog for cellular uptake, intra- and extracellular stability, and their enzymatic degradation. The two peptides, pVEC and all-D pVEC, translocate into aortic endothelial cells and murine fibroblasts by a non-endocytotic mechanism. In phosphate buffer, pVEC remains intact while the C-terminal lysine is quickly removed in human serum and serum-containing media. Both pVEC and pVEC without the C-terminal Lys were detected by mass spectrometry inside the two cell types tested. The pVEC half-life is 10.5 min in phosphate buffer containing 10 units of trypsin and 44.6 min in phosphate buffer containing 4.2 units of carboxypeptidase A and 18 units of carboxypeptidase B. In contrast topVEC, the all-D analog remains intact in serum and resists enzymatic degradation.Keywords
This publication has 0 references indexed in Scilit: