CCR2 Regulates Development of Theiler's Murine Encephalomyelitis Virus-Induced Demyelinating Disease

Abstract
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a murine model for multiple sclerosis, involves recruitment of T cells and macrophages to the CNS after infection. We hypothesized that CCR2, the only known receptor for CCL2, would be required for TMEV-induced demyelinating disease development because of its role in macrophage recruitment. TMEV-infected SJL CCR2 knockout (KO) mice showed decreased long-term clinical disease severity and less demyelination compared with controls. Flow cytometric data indicated that macrophages (CD45high CD11b+ ) in the CNS of TMEV-infected CCR2 KO mice were decreased compared with control mice throughout disease. CD4+ and CD8+ T cell percentages in the CNS of TMEV-infected control and CCR2 KO mice were similar over the course of disease. There were no apparent differences between CCR2 KO and control peripheral immune responses. The frequency of interferon-γ-producing T cells in response to proteolipid protein 139–151 in the CNS was also similar during the autoimmunity stage of TMEV-induced demyelinating disease. These data suggest that CCR2 is important for development of clinical disease by regulating macrophage accumulation after TMEV infection.