A global jacobi method for a symmetric indefinite problem Sx = λTx
- 31 July 1983
- journal article
- Published by Elsevier in Computer Methods in Applied Mechanics and Engineering
- Vol. 38 (3) , 273-290
- https://doi.org/10.1016/0045-7825(83)90057-9
Abstract
No abstract availableThis publication has 10 references indexed in Scilit:
- A quadratically convergent Jacobi-like method for real matrices with complex eigenvaluesNumerische Mathematik, 1979
- On a class of Jacobi-like procedures for diagonalising arbitrary real matricesNumerische Mathematik, 1979
- Efficient solution of quadratic eigenproblems arising in dynamic analysis of structuresComputer Methods in Applied Mechanics and Engineering, 1977
- Some convergent Jacobi-like procedures for diagonalising J-symmetric matricesNumerische Mathematik, 1976
- Hypermatrix generalization of the Jacobi- and Eberlein-method for computing eigenvalues and eigenvectors of hermitian or non-hermitian matricesComputer Methods in Applied Mechanics and Engineering, 1974
- Direct Methods for Solving Symmetric Indefinite Systems of Linear EquationsSIAM Journal on Numerical Analysis, 1971
- An eigenvalue algorithm for skew-symmetric matricesNumerische Mathematik, 1971
- Solution to the complex eigenproblem by a norm reducing Jacobi type methodNumerische Mathematik, 1970
- The norm of a matrix after a similarity transformationBIT Numerical Mathematics, 1969
- Solution to the Eigenproblem by a norm reducing Jacobi type methodNumerische Mathematik, 1968