Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells.

Abstract
Apoptosis of the WEHI 231 immature B cell lymphoma line following membrane interaction with an antibody against the surface IgM chains (anti‐IgM) is preceded by dramatic changes in Nuclear Factor‐kappaB (NF‐kappaB)/ Rel binding activities. An early transient increase in NF‐kappaB/Rel binding is followed by a significant decrease in intensity below basal levels. Here we have explored the role of these changes in Rel‐related factors in B cell apoptosis. Treatment of WEH1 231 cells with N‐tosyl‐L‐phenylalanine chloromethyl ketone (TPCK), a protease inhibitor which prevents degradation of the inhibitor of NF‐kappaB (IkappaB)‐alpha, or with low doses of pyrrolidinedithiocarbamate (PDTC) selectively inhibited NF‐kappaB/Rel factor binding and induced apoptosis. Bcl‐XL expression protected WEHI 231 cells from apoptosis induced by these agents. Microinjection of WEHI 231 cells with either IkappaB‐alpha‐GST protein or a c‐Rel affinity‐purified antibody induced apoptosis. Ectopic c‐Rel expression ablated apoptosis induced by TPCK or anti‐IgM. Treatment of BALENLM 17 and A20 B lymphoma cells or normal murine splenic B lymphocytes with either TPCK or PDTC also resulted in apoptosis. These findings indicate that the drop in NF‐kappaB/Rel binding following anti‐IgM treatment activates apoptosis of WEHI 231 cells; furthermore, they implicate the NF‐kappaB/Rel family in control of apoptosis of normal and transformed B cells.