Interannual Climate Variability and Snowpack in the Western United States
Open Access
- 1 May 1996
- journal article
- Published by American Meteorological Society in Journal of Climate
- Vol. 9 (5) , 928-948
- https://doi.org/10.1175/1520-0442(1996)009<0928:icvasi>2.0.co;2
Abstract
An important part of the water supply in the western United States is derived from runoff fed by mountain snowmelt Snow accumulation responds to both precipitation and temperature variations, and forms an interesting climatic index, since it integrates these influences over the entire late fall-spring period. Here, effects of cool season climate variability upon snow water equivalent (SWE) over the western part of the conterminous United States are examined. The focus is on measurements on/and 1 April, when snow accumulation is typically greatest. The primary data, from a network of mountainous snow courses, provides a good description of interannual fluctuations in snow accumulations, since many snow courses have records of five decades or more. For any given year, the spring SWE anomaly at a particular snow course is likely to be 25%–60% of its long-term average. Five separate regions of anomalous SWE variability are distinguished, using a rotated principal components analysis. Although effects... Abstract An important part of the water supply in the western United States is derived from runoff fed by mountain snowmelt Snow accumulation responds to both precipitation and temperature variations, and forms an interesting climatic index, since it integrates these influences over the entire late fall-spring period. Here, effects of cool season climate variability upon snow water equivalent (SWE) over the western part of the conterminous United States are examined. The focus is on measurements on/and 1 April, when snow accumulation is typically greatest. The primary data, from a network of mountainous snow courses, provides a good description of interannual fluctuations in snow accumulations, since many snow courses have records of five decades or more. For any given year, the spring SWE anomaly at a particular snow course is likely to be 25%–60% of its long-term average. Five separate regions of anomalous SWE variability are distinguished, using a rotated principal components analysis. Although effects...Keywords
This publication has 0 references indexed in Scilit: