Calcium-Stimulated Adenylyl Cyclases Required for Long-Term Potentiation in the Anterior Cingulate Cortex

Abstract
Activity-dependent long-term potentiation (LTP) in the CNS is thought to be important in learning, memory, development, and persistent pain. Here, we report that NMDA receptor-dependent LTP is the major form of long-term plasticity in the anterior cingulate cortex (ACC). In addition to N -methyl-d-aspartate (NMDA) receptors, L-type voltage-gated calcium channels are also required for inducing LTP. Activation of calcium-stimulated adenylyl cyclase subtype 1 (AC1) is essential for the induction of LTP in ACC neurons, while AC8 subunit partially contributes to forskolin-induced potentiation. Our results suggest that calcium-stimulated cAMP-dependent signaling pathways play a critical role in cingulate LTP.