Smearing of Coulomb Blockade by Resonant Tunneling

Abstract
We study the Coulomb blockade in a grain coupled to a lead via a resonant impurity level. We show that the strong energy dependence of the transmission coefficient through the impurity level can have a dramatic effect on the quantization of the grain charge. In particular, if the resonance is sufficiently narrow, the Coulomb staircase shows very sharp steps even if the transmission through the impurity at the Fermi energy is perfect. This is in contrast to the naive expectation that perfect transmission should completely smear charging effects.

This publication has 0 references indexed in Scilit: