Conversion of 3‐dehydroecdysone by a ketoreductase in post‐diapause, pre‐hatch eggs of the gypsy moth Lymantria dispar

Abstract
The prothoracic glands (PGs) of Lymantria dispar (day-5 female, last-stage larvae) produce both ecdysone and an ecdysteroid which has the same retention time on reverse-phase liquid chromatography (RPLC) as a known standard of 3-dehydroecdysone. The latter ecdysteroid can be converted by a heat-labile factor in extracts of post-diapause, pre-hatch L. dispar eggs to an ecdysteroid which has the same retention time on RPLC as ecdysone. Purified 3-dehydroecdysone, similarly treated with egg extract, also gives the same retention time on RPLC as ecdysone. Taken together, these data suggest that, like Manduca sexta, a major product of the PGs in L. dispar is 3-dehydroecdysone. Furthermore, these data suggest that L. dispar eggs, which contain mature embryos, possess ecdysteroid ketoreductase activity capable of converting 3-dehydroecdysone to ecdysone. This is the first report of ecdysteroid ketoreductase activity in embryonated eggs.