Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell.
Open Access
- 1 August 1995
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 130 (3) , 579-590
- https://doi.org/10.1083/jcb.130.3.579
Abstract
Receptor desensitization is a key process for the protection of the cell from continuous or repeated exposure to high concentrations of an agonist. Well-established mechanisms for desensitization of guanine nucleotide-binding protein (G protein)-coupled receptors include phosphorylation, sequestration/internalization, and down-regulation. In this work, we have examined some mechanisms for desensitization of the cholecystokinin (CCK) receptor which is native to the pancreatic acinar cell, and have found the predominant mechanism to be distinct from these recognized processes. Upon fluorescent agonist occupancy of the native receptor, it becomes "insulated" from the effects of acid washing and becomes immobilized on the surface of the plasma membrane in a time- and temperature-dependent manner. This localization was assessed by ultrastructural studies using a colloidal gold conjugate of CCK, and lateral mobility of the receptor was assessed using fluorescence recovery after photobleaching. Of note, recent application of the same morphologic techniques to a CCK receptor-bearing Chinese hamster ovary cell line demonstrated prominent internalization via the clathrin-dependent endocytic pathway, as well as entry into caveolae (Roettger, B.F., R.U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J.M. Larkin, and L.J. Miller, 1995, J. Cell Biol. 128: 1029-1041). These organelles are not observed to represent prominent compartments for the same receptor to traverse in the acinar cell, although fluorescent insulin is clearly internalized in these cells via receptor-mediated endocytosis. In this work, the rate of lateral mobility of the CCK receptor is observed to be similar in both cell types (1-3 x 10(-10) cm2/s), while the fate of the agonist-occupied receptor is quite distinct in each cell. This supports the unique nature of desensitization processes which occur in a cell-specific manner. A plasmalemmal site of insulation of this important receptor on the pancreatic acinar cell could be particularly effective to protect the cell from processes which might initiate pancreatitis, while providing for the rapid resensitization of this receptor to ensure appropriate pancreatic secretion to aid in nutrient assimilation for the organism.Keywords
This publication has 44 references indexed in Scilit:
- Molecular dynamics of luteinizing hormone receptors on rat luteal cellsBiochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1992
- Vasopressin V2-receptor mobile fraction and ligand-dependent adenylate cyclase activity are directly correlated in LLC-PK1 renal epithelial cells.The Journal of cell biology, 1991
- Ammonium chloride affects receptor number and lateral mobility of the vasopressin V2-type receptor in the plasma membrane of LLC-PK1 renal epithelial cells: Role of the cytoskeletonExperimental Cell Research, 1990
- Regulation of chemoattractant receptor interaction with transducing proteins by organizational control in the plasma membrane of human neutrophils.The Journal of cell biology, 1989
- Redistribution of Clathrin Heavy and Light Chains in Anoxic Pancreatic Acinar CellsPancreas, 1986
- Association of sequestered beta-adrenergic receptors with the plasma membrane: A novel mechanism for receptor down regulationLife Sciences, 1984
- Identification and localization of cholecystokinin-binding sites on rat pancreatic plasma membranes and acinar cells: a biochemical and autoradiographic study.The Journal of cell biology, 1983
- Lateral motion of membrane proteins and biological functionThe Journal of Membrane Biology, 1983
- Influence of membrane lipids on acetylcholine receptor and lipid probe diffusion in cultured myotube membraneBiochemistry, 1978
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970