Generalized unstructured decimation [computer graphics]

Abstract
This article presents a general algorithm for decimating unstructured discretized data sets. The discretized space may be a planar triangulation, a general 3D surface triangulation, or a 3D tetrahedrization. Local dynamic vertex removal is performed without history information, while preserving the initial topology and boundary geometry. The decimation algorithm generates a candidate tessellation and topologically identifies the set of valid n-simplices that tessellate the convex/nonconvex hole. The algorithm uses only existing vertices and assumes manifold geometry. The research focuses on how to remove a vertex from an existing unstructured n-dimensional tessellation, not on the formulation of application specific decimation criteria.

This publication has 13 references indexed in Scilit: