Localization of Niemann–Pick C1 protein in astrocytes: Implications for neuronal degeneration in Niemann– Pick type C disease
Open Access
- 16 February 1999
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 96 (4) , 1657-1662
- https://doi.org/10.1073/pnas.96.4.1657
Abstract
Niemann–Pick type C disease (NP-C) is an inherited neurovisceral lipid storage disorder characterized by progressive neurodegeneration. Most cases of NP-C result from inactivating mutations of NPC1, a recently identified member of a family of genes encoding membrane-bound proteins containing putative sterol sensing domains. By using a specific antipeptide antibody to human NPC1, we have here investigated the cellular and subcellular localization and regulation of NPC1. By light and electron microscopic immunocytochemistry of monkey brain, NPC1 was expressed predominantly in perisynaptic astrocytic glial processes. At a subcellular level, NPC1 localized to vesicles with the morphological characteristics of lysosomes and to sites near the plasma membrane. Analysis of the temporal and spatial pattern of neurodegeneration in the NP-C mouse, a spontaneous mutant model of human NP-C, by amino–cupric–silver staining, showed that the terminal fields of axons and dendrites are the earliest sites of degeneration that occur well before the appearance of a neurological phenotype. Western blots of cultured human fibroblasts and monkey brain homogenates revealed NPC1 as a 165-kDa protein. NPC1 levels in cultured fibroblasts were unchanged by incubation with low density lipoproteins or oxysterols but were increased 2- to 3-fold by the drugs progesterone and U-18666A, which block cholesterol transport out of lysosomes, and by the lysosomotropic agent NH4Cl. These studies show that NPC1 in brain is predominantly a glial protein present in astrocytic processes closely associated with nerve terminals, the earliest site of degeneration in NP-C. Given the vesicular localization of NPC1 and its proposed role in mediating retroendocytic trafficking of cholesterol and other lysosomal cargo, these results suggest that disruption of NPC1-mediated vesicular trafficking in astrocytes may be linked to neuronal degeneration in NP-C.Keywords
This publication has 37 references indexed in Scilit:
- Expression of NMDA Receptor-1 (NR1) and Huntingtin in Striatal Neurons Which Colocalize Somatostatin, Neuropeptide Y, and NADPH Diaphorase: A Double-Label Histochemical and Immunohistochemical StudyExperimental Neurology, 1997
- A Role for Astrocytes in Glucose Delivery to Neurons?Developmental Neuroscience, 1996
- Distribution of glial fibrillary acidic protein and glutamine synthetase in human cerebral cortical astrocytes ? a light and electron microscopic studyJournal of Neurocytology, 1993
- Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery.Journal of Clinical Investigation, 1993
- Spontaneous Hypercholesterolemia and Arterial Lesions in Mice Lacking Apolipoprotein EScience, 1992
- Genetic Defects of Lysosomal Function in AnimalsAnnual Review of Nutrition, 1989
- Impaired cholesterol esterification in primary brain cultures of the lysosomal cholesterol storage disorder (LCSD) mouse mutantBiochemical and Biophysical Research Communications, 1987
- Identification of two lysosomal membrane glycoproteins.The Journal of cell biology, 1985
- Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzymeCell, 1985
- A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidaseBiochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1980