Gel-forming mucins appeared early in metazoan evolution
Top Cited Papers
- 9 October 2007
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (41) , 16209-16214
- https://doi.org/10.1073/pnas.0705984104
Abstract
Mucins are proteins that cover and protect epithelial cells and are characterized by domains rich in proline, threonine, and serine that are heavily glycosylated (PTS or mucin domains). Because of their sequence polymorphism, these domains cannot be used for evolutionary analysis. Instead, we have made use of the von Willebrand D (VWD) and SEA domains, typical for mucins. A number of animal genomes were examined for these domains to identify mucin homologues, and domains of the resulting proteins were used in phylogenetic studies. The frog Xenopus tropicalis stands out because the number of gel-forming mucins has markedly increased to at least 25 as compared with 5 for higher animals. Furthermore, the frog Muc2 homologues contain unique PTS domains where cysteines are abundant. This animal also has a unique family of secreted mucin-like proteins with alternating PTS and SEA domains, a type of protein also identified in the fishes. The evolution of the Muc4 mucin seems to have occurred by recruitment of a PTS domain to AMOP, NIDO, and VWD domains from a sushi domain-containing family of proteins present in lower animals, and Xenopus is the most deeply branching animal where a protein similar to the mammalian Muc4 was identified. All transmembrane mucins seem to have appeared in the vertebrate lineage, and the MUC1 mucin is restricted to mammals. In contrast, proteins with properties of the gel-forming mucins were identified also in the starlet sea anemone Nematostella vectensis , demonstrating an early origin of this group of mucins.Keywords
This publication has 23 references indexed in Scilit:
- The complex multidomain organization of SCO-spondin protein is highly conserved in mammalsBrain Research Reviews, 2007
- Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucinNature Structural & Molecular Biology, 2005
- Modeling the structure of the Type I peritrophic matrix: characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domainsInsect Biochemistry and Molecular Biology, 2004
- Improved Prediction of Signal Peptides: SignalP 3.0Journal of Molecular Biology, 2004
- Bioinformatic identification of polymerizing and transmembrane mucins in the puffer fish Fugu rubripesGlycobiology, 2004
- The Pfam protein families databaseNucleic Acids Research, 2004
- The MUC family: an obituaryTrends in Biochemical Sciences, 2002
- Initial sequencing and analysis of the human genomeNature, 2001
- Molecular Patterning of the Oikoplastic Epithelium of the Larvacean Tunicate Oikopleura dioicaJournal of Biological Chemistry, 2001
- Profile hidden Markov models.Bioinformatics, 1998