Clara cell protein (CC16): characteristics and potential applications as biomarker of lung toxicity

Abstract
Most biomarkers of lung toxicity presently available require a bronchoahreolar lavage (BAL). Such a procedure cannot be applied for monitoring populations at risk in the industry or environment nor for a regular follow-up of patients with lung disorders. A lung biomarker, measurable in serum, BAL fluid and sputum has recently been identified. This biomarker is a microptotein initially isolated from urine (Urine Protein 1) and subsequently identified as the major secretory product of lung Clara cells which are non-ciliated cells localized predominantly in terminal bronchioles. This protein called Clara cell protein (CC16) is a homodimer of 15.8 kDA. Several lines of evidence indicate that CC16 is a natural immunoregulator protecting the respiratory tract from unwanted inflammatory reactions. CC16 secreted in the respiratory tract diffuses passively by transudation into plasma from where it is rapidly eliminated by glomerular filtration before being taken up and catabolized in proximal tubule cells. Studies reviewed here suggest that CC16 in BAL fluid or serum is a sensitive indicator of acute or chronic bronchial epithelium injury. A significant reduction of CC16 has been found in serum and BAL fluid of asymptomatic smokers. On average serum CC16 decreases by 15% for each 10 pack-year smoking history. Serum CC16 was also found to be decreased in several occupational groups chronically exposed to different air pollutants (silica, dust, welding fumes). A dose—effect relationship with the intensity of exposure to dust has been found in one study on foundry workers. The concentration of CC16 in serum can also be used to detect an acute or chronic disruption of the bronchoalveolar/blood barrier integrity. While confirming the potential interest of CC16 as a lung biomarker, clinical investigations indicate that CC16 might be an important mediator in the development of lung injury. These findings open new perspectives in the assessment of lung toxicity by suggesting that readily diffusible lung-specific proteins may serve as peripheral markers of pneumotoxicity.

This publication has 38 references indexed in Scilit: