Abstract
Terrestrial systems based on dispersion-managed solitons are limited by the signal-to-noise-ratio degradation that is due to amplifier noise and soliton interaction. The propagation of dispersion-managed solitons is modeled with two parameters. Rules for determining easily the steady propagation conditions are given. For the study of the soliton interaction, two more parameters per soliton are required (time and frequency). An accurate modeling of the time and frequency shifts induced by the interaction is derived with a Lagrangian formalism. Both single and alternate polarizations are considered. The interaction is shown to be increased with dispersion-managed solitons as compared to path-averaged solitons; however, system performance is shown to be better with dispersion-managed solitons thanks to increased soliton energy.