Abstract
Two problems are considered. First, it is shown experimentally that the amount of viscous fluid left on the walls of a horizontal tube, when it is expelled by an inviscid fluid, reaches an asymptotic value of 0.60 of the amount required to fill the tube, when the parameter μU/T is increased, μ and T being the coefficients of viscosity and interfacial surface tension respectively, and U the velocity of the interface between the two fluids. Secondly, by neglecting the inertia terms in the equations of motion and the effect of gravity, a theory for the passage of this type of bubble is presented, together with experimental results in support of the theory. It is shown that such a solution is only valid under certain other restrictions, and then only to within half a tube diameter of the nose of the bubble.

This publication has 2 references indexed in Scilit: