In this paper we consider the problem of identifying logic programming languages for linear logic. Our analysis builds on a notion of goal-directed provability, characterized by the so-called uniform proofs, previously introduced for minimal and intuitionistic logic. A class of uniform proofs in linear logic is identified by an analysis of the permutability of inferences in the linear sequent calculus. We show that this class of proofs is complete (for logical consequence) for a certain (quite large) fragment of linear logic, which thus forms a logic programming language. We obtain a notion of resolution proof, in which only one left rule, of clause-directed resolution, is required. We also consider a translation, resembling those of Girard, of the hereditary Harrop fragment of intuitionistic logic into our framework. We show that goal-directed provability is preserved under this translation.