Fluorescence Lifetime Studies of Crude Oils

Abstract
The fluorescence lifetimes of a series of crude oils at various concentrations have been measured for UV-visible excitation and emission wavelengths. The lifetime results are compared with fluorescence spectra and quantum yields for these solutions. The concentration effects of energy transfer and quenching are large and result in a significant decrease in fluorescence lifetimes for high concentrations and for heavy crude oils. Thus, radiationless processes dominate in energy transfer. At high concentrations, energy transfer produces large red shifts in fluorescence emission spectra, while quenching produces a large reduction in quantum yields. Stern-Volmer analyses of lifetime and quenching data show a linear dependence of energy transfer and quenching rates on concentration. The rate constants are consistent with collisions which are very efficient at energy transfer and quenching, and the rates of these two processes are comparable.