Absence of Gamma-Range Corticomuscular Coherence During Dynamic Force in a Deafferented Patient

Abstract
Recently, we studied corticomuscular coherence (CMC) in a visuomotor task and showed for the first time gamma-range (30–45 Hz) CMC during isometric compensation of a periodically modulated dynamic force. We speculated that for the control of such forces, the sensorimotor system resonates at gamma-range frequencies to rapidly integrate the visual and proprioceptive information and produce the appropriate motor command. In this study, we tested the role of the proprioceptive afferent feedback on gamma-range CMC by comparing the deafferented patient GL to six age- and sex-matched subjects during the performance of a visuomotor force task consisting of isometric compensation of static and dynamic forces applied on the finger. Patient GL presented no significant gamma-band CMC during dynamic force. Instead, she had only beta-range CMC as in the static force condition; concurrently, her performance was significantly worse than that of the controls in both conditions. This gives support to the conclusions of our previous paper and suggests that proprioceptive information is mandatory in the genesis of gamma-band CMC during the generation and control of dynamic forces.