Abstract
We study the timing properties of the low mass X-ray binary 4U 1728-34 using recently released data from the Rossi X-Ray Timing Explorer. This binary, like many others with accreting neutron stars, is known to exhibit strong quasi-periodic oscillations (QPOs) of its X-ray flux near 1 kHz. In addition to the kilohertz QPOs, the Fourier power spectra show a broken power law noise component, with a break frequency between 1 and 50 Hz, and a Lorentzian between 10 and 50 Hz. We find that the frequencies of the break and the low-frequency Lorentzian are well correlated with the frequencies of the kilohertz QPOs. The slope of the correlation is similar to that expected if the oscillations are due to relativistic frame dragging (Lense-Thirring precession) in the inner accretion disk (Stella & Vietri 1998). The correlation is also nearly identical to the one found in Z-sources between the the well known QPOs on the horizontal branch and the kilohertz QPOs, suggesting that the low frequency oscillations are a similar phenomenon in these sources. The frequency of the break in the power spectra is also correlated with the frequencies of the kilohertz QPOs. As previously noted for the similar binaries 4U 1608-50 and 4U 1705-44, this broken power law component closely resembles that of black hole candidates in the low state, where the break frequency is taken as an indicator of mass accretion rate. The relation between break frequency and kilohertz QPO frequency thus provides additional proof that the frequency of the kilohertz QPOs increases with mass accretion rate.

This publication has 0 references indexed in Scilit: