Effects of different doses of galanthamine, a long-acting acetylcholinesterase inhibitor, on memory in mice

Abstract
The effects of galanthamine, a long-acting acetylcholinesterase inhibitor, on passive avoidance and a modified Morris swim task were studied in mice. Lesions of the nucleus basalis magnocellularis (nBM) produced significant decreases in cortical choline acetyltransferase (ChAT) activity and profound deficits on the 24-h retention of a passive avoidance response and the reversal phase of the swim task. Galanthamine, administered 4 h before testing, improved performance of the two tasks in a dose-dependent fashion. In both tasks, galanthamine produced a U-shaped dose-response curve: the optimal dose was 3.0 mg/kg, IP on passive avoidance and 2.0 mg/kg on the swim task. The improvements in performance were not due to differences in motor activity or sensitivity to electric footshock. Behavioral tolerance did not occur from repeated doses of galanthamine; in fact, prior doses of galanthamine appeared to have a priming effect on later performance. In contrast to the effects in nBM-lesioned mice, galanthamine impaired performance of control mice on both tasks. Several characteristics of galanthamine suggest that it may be effective in treating the central cholinergic deficits in Alzheimer's disease: 1) its ability to attentuate cognitive deficits in nBM-lesioned mice, 2) its relatively long half-life, and 3) its lack of tolerance effects in mice during 2 weeks of repeated dosing.