The distribution of blood rheological parameters in the microvasculature of cat mesentery.
- 1 November 1978
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 43 (5) , 738-749
- https://doi.org/10.1161/01.res.43.5.738
Abstract
In vivo studies of the rheological behavior of blood in the microcirculation were conducted by direct in situ measurements in cat mesentery. Upstream to downstream pressure drops were measured in unbranched arterioles, capillaries, and venules, with diameters from 7 to 58 micrometer. Simultaneous measurements of red cell velocity and vessel geometry facilitated computation of bulk velocity, pressure gradient, apparent viscosity, wall shear stress, and resistance. Arteriovenous distributions of these parameters revealed the following. Maximum pressure gradient (0.015 cm H20/micrometer) occurs in the true capillaries (7 micrometer in diameter); intravascular wall shear stress averaged 47.1 dynes/cm2 in arterioles and 29.0 dynes/cm2 in venules. Extreme values as great as 200 dynes/cm2 were observed in a few shunting arterioles. Apparent viscosity averaged 3.59 cP in arterioles, 5.15 cP in venules, and 4.22 cP overall. Intravascular resistance per unit length of microvessel varied with luminal diameter as a power law function with exponents of -4.04 for arterioles, -3.94 for venules, and -3.99 for all vessels combined. This apparent maintenance of Poiseuille's law is attributed to the opposing processes of hematocrit reduction and decreasing shear rate as blood is dispersed in successive arteriolar segments, and the converse action of these processes in the venous confluences which lessen the extent of network variations in apparent viscosity. Reductions in bulk velocity from the normal flow state to below 0.5 mm/sec resulted in increases in apparent viscosity by a factor of 2 to 10, which are attributed primarily to obstruction of the lumen by leukocyte-endothelium adhesion.This publication has 24 references indexed in Scilit:
- Application of the “two-slit” photometric technique to the measurement of microvascular volumetric flow ratesMicrovascular Research, 1978
- Methods for the simultaneous measurement of pressure differentials and flow in single unbranched vessels of the microcirculation for rheological studiesMicrovascular Research, 1977
- Network analysis of microcirculation of cat mesenteryMicrovascular Research, 1974
- On-line volume flow rate and velocity profile measurement for blood in microvesselsMicrovascular Research, 1974
- Microvascular measurements by video image shearing and splittingMicrovascular Research, 1973
- Effects of Vasoconstriction on Blood Viscosity in VivoActa Physiologica Scandinavica, 1971
- Prediction of blood flow in tubes with diameters as small as 29 μMicrovascular Research, 1971
- Pressure measurements in the mammalian microvasculatureMicrovascular Research, 1970
- A Comparison of Blood Viscosity Measured In Vitro and in a Vascular BedActa Physiologica Scandinavica, 1970
- Blood-viscosity and Vascular Flow Rate Blood-viscosity Measured in a Cone-plate Viscometer and the Flow Rate in an Isolated Vascular BedScandinavian Journal of Clinical and Laboratory Investigation, 1968