Molecular and genetic events accompanying petite induction and recovery of respiratory competence induced by ethidium bromide

Abstract
Summary The treatment of yeast cells with high levels of ethidium bromide causes a rapid induction of respiratory deficient mutants followed by a period of recovery to respiratory competence in 60 to 70% of the cells. Prolonged exposure then results in a final irreversible phase of petite formation. Sucrose gradient sedimentation analysis of 3H-adenine labelled mtDNA indicates that limited fragmentation (to about 16-18S) occurs during the initial phase of petite induction followed by a reassembly of the fragments during the period corresponding to the recovery of respiratory competence. The reassembly is associated with an ethidium bromide insensitive incorporation of 3H-adenine into mtDNA at a level consistent with repair synthesis. Genetic analyses, based on the transmission of five markers carried on the mtDNA of “repaired ρ+” clones, suggests that reassembly occurs with a high degree of fidelity, though in two of a total of twenty five clones differences in marker transmission frequency were observed which could possibly reflect an altered gene order. In addition, a description is given of the marked changes in the suppressive nature of the treated cells and the temporary reduction in the capacity for marker transmission seen to accompany the transitory fragmentation of the mtDNA. The final phase of petite induction is an energy dependent degradation of the mtDNA to produce a ρ0 culture.