Characterization of the polyene macrolide P450 epoxidase from Streptomyces natalensis that converts de-epoxypimaricin into pimaricin

Abstract
The biosynthesis of the antifungal agent pimaricin by Streptomyces natalensis has been proposed to involve a cytochrome P450 encoded by the gene pimD. Pimaricin is derived from its immediate precursor de-epoxypimaricin by epoxidation of the C-4–C-5 double bond on the macrolactone ring. We have overproduced PimD with a N-terminal His6 affinity tag in Escherichia coli and purified the enzyme for kinetic analysis. The protein showed a reduced CO-difference spectrum with a Soret maximum at 450 nm, indicating that it is a cytochrome P450. Purified PimD was shown to catalyse the in vitro C-4–C-5 epoxidation of 4,5-de-epoxypimaricin to pimaricin. The enzyme was dependent on NADPH for activity with optimal pH at 7.5, and the temperature optimum was 30 °C. The kcat value for the epoxidation of de-epoxypimaricin was similar to the values reported for other macrolide oxidases. Enzyme activity was inhibited at high substrate concentration. This is the first time that a polyene macrolide P450 mono-oxygenase has been expressed heterologously and studied. The unique specificity of this epoxidase should be useful for the oxidative modification of novel polyene macrolide antibiotics.