Arrhenius parameters of elementary reactions involved in the oxidation of neopentane
- 1 January 1982
- journal article
- research article
- Published by Royal Society of Chemistry (RSC) in Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases
- Vol. 78 (5) , 1615-1627
- https://doi.org/10.1039/f19827801615
Abstract
The reactions of neopentyl radicals in an oxidising environment have been studied by adding neopentane to slowly reacting mixtures of H2+ O2 over the temperature range 380–520 °C. Over a wide range of mixture composition, the only detectable initial products at these temperatures are 3,3-dimethyloxetan (DMO), acetone, i-butene, methane, and formaldehyde. A relatively simple mechanism involving the formation of neopentylhydroperoxide (QOOH) radicals gives a quantitative interpretation of the product yields. Although the major source of i-butene is the C—C homolysis of neopentyl radicals, a significant proportion is formed in reaction (6)(CH3)2C(CH2OOH)CH2→(CH3)2CCH2+ HCHO + OH. (6) From measurements of the product ratios ([acetone]+[DMO])/[i-butene] and [acetone]/[DMO] at each temperature used, Arrhenius parameters have been determined for a number of the elementary steps. The recommended value of k3= 1.20 × 1013 exp (– 120 kJ mol–1/RT) S–1 for the 1,5p H-atom transfer in neopentylperoxy radicals is compared with previously determined parameters for the 1,4p H-atom transfer in ethylperoxy radicals. With the Arrhenius expressions for these two transfers as a basis, thermochemical calculations are used to obtain a self-consistent set of Arrhenius parameters from values of rate constants at 480 °C for primary, secondary and tertiary H-atom transfers in alkylperoxy radicals involving ring sizes in the transition state varying from 4 to 8 (CH3)3CCH2O2→(CH3)2C(CH2OOH)CH2. (3)Keywords
This publication has 0 references indexed in Scilit: