The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation.
- 15 October 1999
- journal article
- review article
- Vol. 343, 281-99
Abstract
Monocarboxylates such as lactate and pyruvate play a central role in cellular metabolism and metabolic communication between tissues. Essential to these roles is their rapid transport across the plasma membrane, which is catalysed by a recently identified family of proton-linked monocarboxylate transporters (MCTs). Nine MCT-related sequences have so far been identified in mammals, each having a different tissue distribution, whereas six related proteins can be recognized in Caenorhabditis elegans and 4 in Saccharomyces cerevisiae. Direct demonstration of proton-linked lactate and pyruvate transport has been demonstrated for mammalian MCT1-MCT4, but only for MCT1 and MCT2 have detailed analyses of substrate and inhibitor kinetics been described following heterologous expression in Xenopus oocytes. MCT1 is ubiquitously expressed, but is especially prominent in heart and red muscle, where it is up-regulated in response to increased work, suggesting a special role in lactic acid oxidation. By contrast, MCT4 is most evident in white muscle and other cells with a high glycolytic rate, such as tumour cells and white blood cells, suggesting it is expressed where lactic acid efflux predominates. MCT2 has a ten-fold higher affinity for substrates than MCT1 and MCT4 and is found in cells where rapid uptake at low substrate concentrations may be required, including the proximal kidney tubules, neurons and sperm tails. MCT3 is uniquely expressed in the retinal pigment epithelium. The mechanisms involved in regulating the expression of different MCT isoforms remain to be established. However, there is evidence for alternative splicing of the 5'- and 3'-untranslated regions and the use of alternative promoters for some isoforms. In addition, MCT1 and MCT4 have been shown to interact specifically with OX-47 (CD147), a member of the immunoglobulin superfamily with a single transmembrane helix. This interaction appears to assist MCT expression at the cell surface. There is still much work to be done to characterize the properties of the different isoforms and their regulation, which may have wide-ranging implications for health and disease. In the future it will be interesting to explore the linkage of genetic diseases to particular MCTs through their chromosomal location.This publication has 100 references indexed in Scilit:
- Identification of a Unique Monocarboxylate Transporter (MCT3) in Retinal Pigment EpitheliumBiochemical and Biophysical Research Communications, 1997
- The Kinetics, Substrate, and Inhibitor Specificity of the Monocarboxylate (Lactate) Transporter of Rat Liver Cells Determined Using the Fluorescent Intracellular pH Indicator, 2′,7′-Bis(carboxyethyl)-5(6)-carboxyfluoresceinPublished by Elsevier ,1996
- cDNA Cloning and Functional Characterization of Rat Intestinal Monocarboxylate TransporterBiochemical and Biophysical Research Communications, 1995
- Developmental Expression and Molecular Cloning of REMP, a Novel Retinal Epithelial Membrane ProteinExperimental Cell Research, 1995
- cDNA Cloning of the Human Monocarboxylate Transporter 1 and Chromosomal Localization of the SLC16A1 Locus to 1p13.2-p12Genomics, 1994
- A novel transmembrane transporter encoded by the XPCT gene in Xq13.2Human Molecular Genetics, 1994
- Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteinsBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1993
- Lactate transport in insulin-secreting β-cells: Contrast between rat islets and HIT-T15 insulinoma cellsMolecular and Cellular Endocrinology, 1992
- Monocarboxylate transport in erythrocytesThe Journal of Membrane Biology, 1982
- A simple method for displaying the hydropathic character of a proteinJournal of Molecular Biology, 1982