A novel fungal ?3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4
- 5 November 2004
- journal article
- biotechnologically relevant-enzymes-and-proteins
- Published by Springer Nature in Applied Microbiology and Biotechnology
- Vol. 66 (6) , 648-654
- https://doi.org/10.1007/s00253-004-1760-x
Abstract
A filamentous fungus, Mortierella alpina 1S-4, is capable of producing not only arachidonic acid (AA; 20:4n-6) but also eicosapentaenoic acid (EPA; 20:5n-3) below a cultural temperature of 20°C. Here, we describe the isolation and characterization of a gene (maw3) that encodes a novel ω3-desaturase from M. alpina 1S-4. Based on the conserved sequence information for M. alpina 1S-4 Δ12-desaturase and Saccharomyces kluyveri ω3-desaturase, the ω3-desaturase gene from M. alpina 1S-4 was cloned. Homology analysis of protein databases revealed that the amino acid sequence showed 51% identity, at the highest, with M. alpina 1S-4 Δ12-desaturase, whereas it exhibited 36% identity with Sac. kluyveri ω3-desaturase. The cloned cDNA was confirmed to encode the ω3-desaturase by its expression in the yeast Sac. cerevisiae. Analysis of the fatty acid composition of the yeast transformant demonstrated that 18-carbon and 20-carbon n-3 polyunsaturated fatty acids (PUFAs) were accumulated through conversion of exogenous 18-carbon and 20-carbon n-6 PUFAs. The substrate specificity of the M. alpina 1S-4 ω3-desaturase differs from those of the known fungal ω3-desaturases from Sac. kluyveri and Saprolegnia diclina. Plant, cyanobacterial and Sac. kluyveri ω3-desaturases desaturate 18-carbon n-6 PUFAs, Spr. diclina ω3-desaturase desaturates 20-carbon n-6 PUFAs and Caenorhabditis elegans ω3-desaturase prefers 18-carbon n-6 PUFAs as substrates rather than 20-carbon n-6 PUFAs. The substrate specificity of M. alpina 1S-4 ω3-desaturase is rather similar to that of C. elegans ω3-desaturase, but the M. alpina ω3-desaturase can more effectively convert AA into EPA when expressed in yeast. The M. alpina 1S-4 ω3-desaturase is the first known fungal desaturase that uses both 18-carbon and 20-carbon n-6 PUFAs as substrates.Keywords
This publication has 21 references indexed in Scilit:
- Saccharomyces kluyveri FAD3 encodes an ω3 fatty acid desaturaseMicrobiology, 2004
- Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plantsNature Biotechnology, 2004
- A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acidBiochemical Journal, 2004
- Gene Cloning and Functional Analysis of a SecondΔ6-Fatty Acid Desaturase from an Arachidonic Acid-producingMortierellaFungusBioscience, Biotechnology, and Biochemistry, 2003
- Identification of Δ12‐fatty acid desaturase from arachidonic acid‐producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzaeEuropean Journal of Biochemistry, 1999
- Polyunsaturated fatty acids, part 1: Occurrence, biological activities and applicationsTrends in Biotechnology, 1997
- Interactions Between Dietary Fat, Fish, and Fish Oils and Their Effects on Platelet Function in Men at Risk of Cardiovascular DiseaseArteriosclerosis, Thrombosis, and Vascular Biology, 1997
- Isolation and characterization of an ?3-desaturation-defective mutant of an arachidonic acid-producing fungus, Mortierella alpina 1S-4Archiv für Mikrobiologie, 1994
- Arachidonic acid status correlates with first year growth in preterm infants.Proceedings of the National Academy of Sciences, 1993
- Δ 6- and Δ12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis)Biochemical Journal, 1988