Early Detection of Tumor Response to Chemotherapy by 3′-Deoxy-3′-[18F]Fluorothymidine Positron Emission Tomography: The Effect of Cisplatin on a Fibrosarcoma Tumor Model In vivo

Abstract
We have assessed the potential of [18F]fluorothymidine positron emission tomography ([18F]FLT-PET) to measure early cytostasis and cytotoxicity induced by cisplatin treatment of radiation-induced fibrosarcoma 1 (RIF-1) tumor–bearing mice. Cisplatin-mediated arrest of tumor cell growth and induction of tumor shrinkage at 24 and 48 hours, respectively, were detectable by [18F]FLT-PET. At 24 and 48 hours, the normalized uptake at 60 minutes (tumor/liver radioactivity ratio at 60 minutes after radiotracer injection; NUV60) for [18F]FLT was 0.76 ± 0.08 (P = 0.03) and 0.51 ± 0.08 (P = 0.03), respectively, compared with controls (1.02 ± 0.12). The decrease in [18F]FLT uptake at 24 hours was associated with a decrease in cell proliferation assessed immunohistochemically (a decrease in proliferating cell nuclear antigen labeling index, LIPCNA, from 14.0 ± 2.0% to 6.2 ± 1.0%; P = 0.001), despite the lack of a change in tumor size. There were G1-S and G2-M phase arrests after cisplatin treatment, as determined by cell cycle analysis. For the quantitative measurement of tumor cell proliferation, [18F]FLT-PET was found to be superior to [18F]fluorodeoxglucose-PET (NUV60 versus LIPCNA: r = 0.89, P = 0.001 and r = 0.55, P = 0.06, respectively). At the biochemical level, we found that the changes in [18F]FLT and [18F]fluorodeoxglucose uptake were due to changes in levels of thymidine kinase 1 protein, hexokinase, and ATP. This work supports the further development of [18F]FLT-PET as a generic pharmacodynamic readout for early quantitative imaging of drug-induced changes in cell proliferation in vivo.

This publication has 31 references indexed in Scilit: