Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation

Abstract
The extent to which diaphragmatic fatigue results from failure of neural drive has been investigated using twitch occlusion. Fatigue was induced by repeatedly generating transdiaphragmatic pressures (Pdi) of either 50 or 75% maximum Pdi (Pdimax) until .apprx. 10 min after the target Pdi could no longer be reached (Tlim). Maximal bilateral shocks delivered periodically to the phrenic nerves elicited Pdi twitches between breaths (Tr) and superimposed on the voluntary contractions (Ts). The ratio [1 - Ts/Tr], which provides an index of the degree of central nervous system muscle activation, increased as fatigue developed. However, superimposed twitches were still detectable at and beyond Tlim when all contractions involved maximal efforts. They were not seen in maximal contractions of the unfatigued muscle. Initially, the diaphragm electromyogram increased, but then declined. No impairment of neuromuscular transmission was seen. We conclude that at and beyond Tlim about one-half of the reduction in Pdimax resulted from reduced central motor drive; the remainder resulted from peripheral muscle contractile failure. No fatigue was evident during 50% Pdimax dynamic contractions.