Effect of meteorological factors on clinical malaria risk among children: an assessment using village-based meteorological stations and community-based parasitological survey

Abstract
Temperature, rainfall and humidity have been widely associated with the dynamics of malaria vector population and, therefore, with spread of the disease. However, at the local scale, there is a lack of a systematic quantification of the effect of these factors on malaria transmission. Further, most attempts to quantify this effect are based on proxy meteorological data acquired from satellites or interpolated from a different scale. This has led to controversies about the contribution of climate change to malaria transmission risk among others. Our study addresses the original question of relating meteorological factors measured at the local scale with malaria infection, using data collected at the same time and scale.