THE MICROVASCULAR EFFECTS OF PHOTODYNAMIC THERAPY: EVIDENCE FOR A POSSIBLE ROLE OF CYCLOOXYGENASE PRODUCTS

Abstract
Photodynamic therapy (PDT) of malignant tumors may involve the interruption of tumor and peritumor microcirculation. We have studied the effect of light activation of the photosensitizing drug dihematoporphyrin ether (DHE) on rat subcutaneous arterioles and the modulation of these effects by cyclooxygenase inhibitors indomethacin and acetyl salicylic acid (ASA). Animals received DHE 48 h prior to light activation and additionally either indomethacin, ASA or saline 3 h prior to treatment. Light activation (630 nm, 60 J/cm2) resulted in a significant reduction to 62 ± 2% SEM of initial blood flow. This effect was inhibited by ASA (98 ± 8% SEM) and indomethacin (87 ± 8% SEM). Results from the administration of various doses of both compounds indicate that this inhibition is dose related. The data presented here show that PDT causes a significant reduction in blood flow in normal arterioles and that this effect was inhibited by ASA and indomethacin indicating that prostaglandins or thromboxane A2 may play an important role in the microvascular response to PDT.