Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin

Abstract
Candida albicans was found to be highly susceptible to inhibition and inactivation by lactoferricin B, a peptide produced by enzymatic cleavage of bovine lactoferrin. Effective concentrations of the peptide varied within the range of 18 to 150 μg/ml depending on the strain and the culture medium used. Its effect was lethal, causing a rapid loss of colony-forming capability. 14C-labeled lactoferricin B bound to C. albicans and the rate of binding appeared to be consistent with the rate of killing induced by the peptide. The extent of binding was diminished in the presence of Mg2+ or Ca2+ ions which acted to reduce its anticandidal effectiveness. Binding occurred optimally at pH 6.0 and killing was maximal near the same pH. Such evidence suggests the lethal effect of lactoferricin B results from its direct interaction with the cell surface. Cells exposed to lactoferricin B exhibited profound ultrastructural damage which appeared to reflect its induction of an autolytic response. These findings suggest that active peptides of lactoferrin could potentially contribute to the host defense against C. albicans.