Abstract
In the interpretation of induced polarization data, it is commonly assumed that metallic mineral polarization dominantly or solely causes the observed response. However, at low frequencies, there is a variety of active chemical processes which involve the movement or transfer of electrical charge. Measurements of electrical properties at low frequencies (such as induced polarization) observe such movement of charge and thus monitor many geochemical processes at a distance. Examples in which this has been done include oxidation‐reduction of metallic minerals such as sulfides, cation exchange on clays, and a variety of clay‐organic reactions relevant to problems in toxic waste disposal and petroleum exploration. By using both the frequency dependence and nonlinear character of the complex resistivity spectrum, these reactions may be distinguished from each other and from barren or reactionless materials.

This publication has 0 references indexed in Scilit: