Cross‐bridge interaction kinetics in rat myocardium are accelerated by strong binding of myosin to the thin filament
- 1 January 2001
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 530 (2) , 263-272
- https://doi.org/10.1111/j.1469-7793.2001.0263l.x
Abstract
To determine the ability of strong-binding myosin cross-bridges to activate the myocardial thin filament, we examined the Ca2+ dependence of force and cross-bridge interaction kinetics at 15 degrees C in the absence and presence of a strong-binding, non-force-generating derivative of myosin subfragment-1 (NEM-S1) in chemically skinned myocardium from adult rats. Relative to control conditions, application of 6 microM NEM-S1 significantly increased Ca2+-independent tension, measured at pCa 9.0, from 0.8 +/- 0.3 to 3.7 +/- 0.8 mN mm-2. Furthermore, NEM-S1 potentiated submaximal Ca2+-activated forces and thereby increased the Ca2+ sensitivity of force, i.e. the [Ca2+] required for half-maximal activation (pCa50) increased from pCa 5.85 +/- 0.05 to 5.95 +/- 0.04 (change in pCa50 (dpCa50) = 0.11 +/- 0.02). The augmentation of submaximal force by NEM-S1 was accompanied by a marked reduction in the steepness of the force-pCa relationship for forces less than 0.50 Po (maximum Ca2+-activated force), i.e. the Hill coefficient (n2) decreased from 4.72 +/- 0.38 to 1.54 +/- 0.07. In the absence of NEM-S1, the rate of force redevelopment (ktr) was found to increase from 1.11 +/- 0.21 s-1 at submaximal [Ca2+] (pCa 6.0) to 9.28 +/- 0.41 s-1 during maximal Ca2+ activation (pCa 4.5). Addition of NEM-S1 reduced the Ca2+ dependence of ktr by eliciting maximal values at low levels of Ca2+, i.e. ktr was 9.38 +/- 0.30 s-1 at pCa 6.6 compared to 9.23 +/- 0.27 s-1 at pCa 4. At intermediate levels of Ca2+, ktr was less than maximal but was still greater than values obtained at the same pCa in the absence of NEM-S1. NEM-S1 dramatically reduced both the extent and rate of relaxation from steady-state submaximal force following flash photolysis of the caged Ca2+ chelator diazo-2. These data demonstrate that strongly bound myosin cross-bridges increase the level of thin filament activation in myocardium, which is manifested by an increase in the rate of cross-bridge attachment, potentiation of force at low levels of free Ca2+, and slowed rates of relaxation.Keywords
This publication has 32 references indexed in Scilit:
- Thin Filament-Mediated Regulation of Cardiac ContractionAnnual Review of Physiology, 1996
- Sarcomere Length Versus Interfilament Spacing as Determinants of Cardiac Myofilament Ca2+Sensitivity and Ca2+BindingJournal of Molecular and Cellular Cardiology, 1996
- Kinetic Studies of Calcium Binding to the Regulatory Site of Troponin C from Cardiac MuscleJournal of Biological Chemistry, 1996
- Rate of Tension Development in Cardiac Muscle Varies With Level of Activator CalciumCirculation Research, 1995
- Biologically useful chelators that take up calcium(2+) upon illuminationJournal of the American Chemical Society, 1989
- Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle.The Journal of general physiology, 1989
- The effects of partial extraction of TnC upon the tension-pCa relationship in rabbit skinned skeletal muscle fibers.The Journal of general physiology, 1985
- Comparison of effects of smooth and skeletal muscle tropomysins on interactions of actin and myosin subfragment 1Biochemistry, 1984
- Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog.The Journal of general physiology, 1982