Autocrine VEGF-A system in podocytes regulates podocin and its interaction with CD2AP

Abstract
Vascular endothelial growth factor (VEGF-A) signaling is required for endothelial cell differentiation, vasculogenesis, angiogenesis, and vascular patterning. During kidney morphogenesis, podocyte VEGF-A guides endothelial cells toward developing glomeruli. Podocyte VEGF-A expression continues throughout life but its function after completion of development remains unclear. Here, we examined the expression of VEGF-A and its receptors VEGFR1, VEGFR2, NP1, and NP2 in conditionally immortalized mouse podocytes cultured in undifferentiated and differentiated conditions using RT-PCR and Western analysis. VEGF-A secretion was assessed by ELISA and Western analysis. Upon podocyte differentiation, VEGF-A protein expression and secretion increased threefold. Differentiated podocytes expressed eightfold higher VEGFR2 mRNA levels than undifferentiated podocytes, whereas VEGFR1, sVEGFR1, NP1, and NP2 mRNA levels were similar. We examined the regulation and function of the VEGF-A system by exposing differentiated podocytes to recombinant VEGF165(20 ng/ml) or control media for 24 h. VEGF165induced a twofold increase in VEGFR2 mRNA and protein levels, whereas VEGFR1, sVEGFR1, NP1, and NP2 mRNA levels remained unchanged. VEGF165induced VEGFR2 phosphorylation. VEGF165reduced podocyte apoptosis ∼40%, whereas anti-VEGFR2 neutralizing antibody enhanced it twofold. We determined that VEGF-A signaling regulates slit diaphragm proteins by inducing a dose-response podocin upregulation and increasing its interaction with CD2AP. The data indicate that podocytes in culture have a functional autocrine VEGF-A system that is regulated by differentiation and ligand availability. VEGF-A functions in podocytes include promoting survival through VEGFR2, inducing podocin upregulation and increasing podocin/CD2AP interaction.