Nitrogen and phosphorus nutrition and nutrient cycling by evergreen and deciduous understory shrubs in an Alaskan black spruce forest
- 1 October 1983
- journal article
- Published by Canadian Science Publishing in Canadian Journal of Forest Research
- Vol. 13 (5) , 773-781
- https://doi.org/10.1139/x83-107
Abstract
Seasonal patterns of biomass, nitrogen (N), and phosphorus (P) were determined for major plant parts of the deciduous shrub Vacciniumuliginosum L. and the evergreen shrub Ledumgroenlandicum Oeder. in a black spruce (Piceamariana (Mill.) B.S.P.) forest in interior Alaska. New growth comprised 52 ± 7% of aboveground biomass in Vaccinium compared with the evergreen Ledum for which a maximum of 38 ± 3% of aboveground biomass was new growth. In Vaccinium the spring decline in leaf N and P concentration was due to dilution by increasing leaf biomass, whereas the autumn decline in N and P concentration was due to retranslocation, at which time 68–72% of leaf N and P was retranslocated from leaves. In contrast, the entire decline in N and P concentration of new growth in Ledum was due to dilution by increasing leaf biomass. Uptake contributed 60–68% of the maximum N and P requirement for aboveground growth of Vaccinium, with the remainder coming from stored reserves. Ledum supported 71–79% of its aboveground nutrient requirement by direct uptake from soil and may have been less dependent upon stored nutrient reserves. Vaccinium and Ledum together comprised only 0.8–2.8% of the standing crop of aboveground vascular biomass and N and P pools at Washington Creek but contributed 16% of vascular aboveground production and 19–24% of the N and P cycled annually by vascular plants. The importance of understory shrubs is due to their small support structure and rapid turnover of biomass and nutrients (34–43% of aboveground pools annually) relative to that of the trees (2–5% annually). Understory shrubs at Washington Creek and in other evergreen forests are much more important in nutrient cycling than their small biomass would suggest.Keywords
This publication has 0 references indexed in Scilit: