Abstract
Several nonlinear stochastic differential equations have been proposed in connection with self-organized critical phenomena. Due to the threshold condition involved in its dynamic evolution, an infinite number of nonlinearities arise in a hydrodynamic description. We study two models with different noise correlations which make all nonlinear contributions to be equally relevant below the upper critical dimension. The asymptotic values of the critical exponents are estimated from a systematic expansion in the number of coupling constants by means of the dynamic renormalization group.

This publication has 0 references indexed in Scilit: