Endothelin‐1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of ETB receptor, NADPH oxidase and caveolin‐1
Open Access
- 1 June 2005
- journal article
- research article
- Published by Wiley in British Journal of Pharmacology
- Vol. 145 (3) , 323-333
- https://doi.org/10.1038/sj.bjp.0706193
Abstract
1 Endothelin-1 (ET-1), an endothelium-derived vasoactive peptide, participates in the regulation of endothelial function through mechanisms that are not fully elucidated. This study examined the impact of ET-1 on oxidative stress, apoptosis and cell proliferation in human umbilical vein endothelial cells (HUVEC). HUVECs were challenged for 24 h with ET-1 (10 pM-10 nM) in the absence or presence of the ET(B) receptor antagonist BQ788 (1 microM) or the NADPH oxidase inhibitor apocynin (1 microM). Reactive oxygen species (ROS) were detected using chloromethyl-2',7'-dichlorodihydrofluorescein diacetate. Apoptosis was evaluated with 4',6'-diamidino-2'-phenylindoladihydrochloride staining and by the caspase-3 assay. Cell proliferation was measured by a colorimetric assay. Expression of NADPH oxidase, Akt, pAkt, Bcl-2, Bax, IkappaB, caveolin-1 and eNOS was evaluated by Western blot analysis. 2 ET-1 significantly enhanced ROS generation and cell proliferation following 24-h incubation, both of which were prevented by BQ788 or apocynin, consistent with the ability of ET-1 to directly upregulate NADPH oxidase. ET-1 itself did not affect apoptosis but attenuated homocysteine-induced apoptosis through an ET(B) receptor-mediated mechanism. Western blot analysis indicated that ET-1 alleviated homocysteine (Hcy)-induced apoptosis, likely acting by antagonizing the Hcy-induced decreases in Akt, pAkt, pAkt-to-Akt, Bcl-2-to-Bax ratios and increases in Bax and caveolin-1 expression. Furthermore, ET-1 downregulated expression of caveolin-1 and eNOS, which was attenuated by BQ788 or apocynin. 3 In summary, our results suggest that ET-1 affects oxidative stress, proliferation and apoptosis possibly through ET(B), NADPH oxidase, Akt, Bax and caveolin-1-mediated mechanisms.Keywords
This publication has 45 references indexed in Scilit:
- Overexpression of Aldehyde Dehydrogenase-2 (ALDH2) Transgene Prevents Acetaldehyde-induced Cell Injury in Human Umbilical Vein Endothelial CellsJournal of Biological Chemistry, 2004
- Endothelin-1 Stimulates Arterial VCAM-1 Expression Via NADPH Oxidase-Derived Superoxide in Mineralocorticoid HypertensionHypertension, 2003
- AT 1 Blockade Prevents Glucose-Induced Cardiac Dysfunction in Ventricular MyocytesHypertension, 2003
- Endothelin-1 Increases Vascular Superoxide via Endothelin A –NADPH Oxidase Pathway in Low-Renin HypertensionCirculation, 2003
- Cellular response to oxidative stress: Signaling for suicide and survival*Journal of Cellular Physiology, 2002
- Endothelin-1 Induces NAD(P)H Oxidase in Human Endothelial CellsBiochemical and Biophysical Research Communications, 2000
- Endothelin-1 Attenuates ω3 Fatty Acid–Induced Apoptosis by Inhibition of Caspase 3Hypertension, 2000
- ETB Receptors Promote Proliferation and Migration of Endothelial CellsJournal of Cardiovascular Pharmacology, 1995
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976