Differential effects of transforming growth factor-beta 1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors.

Abstract
Cardiac fibroblasts are responsible for synthesis and deposition of fibrillar collagen types I and III. Transforming growth factor-beta 1 (TGF-beta 1) has been proved to increase collagen biosynthesis in various systems, both in vivo and in vitro. We have investigated the effect of TGF-beta 1 on collagen gene expression in cultured cardiac fibroblasts and have compared this effect with that of a mitogenic agent, phorbol myristate acetate (PMA). The regulation of collagen types I and III gene expression was examined by using cDNA probes to rat alpha 2 (I) and mouse alpha 1 (III) procollagens. Quiescent cultured cardiac fibroblasts from rabbit heart were treated with TGF-beta 1 (10-15 ng/ml) and PMA (200 ng/ml). After 24 hours of treatment with TGF-beta 1, the abundance of mRNA for pro-alpha 2 (I) and pro-alpha 1 (III) collagens was increased by 112% (p less than 0.001) and 97% (p = 0.05), respectively, in treated fibroblasts compared with untreated cells. However, PMA-treated cells showed an opposite response: a 42% (p = 0.01) decrease in mRNA levels for pro-alpha 2 (I) collagen was observed. Immunofluorescent staining of cardiac fibroblasts in culture with anti-type I collagen antibody showed that alterations in mRNA levels led to altered collagen synthesis: cellular collagen was relatively increased in TGF-beta 1-treated cells and significantly diminished in PMA-treated cells. The abundance of mRNA for pro-alpha 1 (III) collagen was not affected by PMA treatment.(ABSTRACT TRUNCATED AT 250 WORDS)