Abstract
In vitro culture of pericarp segments from fruit of Citrus sinensis (L.) Osbeck cv Valencia was used to determine the temporal sequence in development of chloroplasts from chromoplasts during regreening of the epicarp. Regreening of chromoplasts closely resembled greening of etioplasts, except that regreening proceeded much more slowly. Chlorophyll, the light-harvesting chlorophyll a/b binding protein of photosystem II, the chlorophyll a/b binding protein of photosystem II, the chlorophyll a binding protein of reaction center P-700 of photosystem I, thylakoid membranes, and adenosine triphosphate synthetase were all detected at very low levels in degreened epicarp. All of these increased in parallel during regreening of the epicarp. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) levels were high in degreened epicarp and declined for the first 10 days of culture before reaccumulating in the regreening segments. Light was necessary for the accumulation of all of the chloroplastic components. A lack of exogenous nitrogen did not prevent the accumulation of any chloroplastic component except RuBPCase, although accumulation of the other components was reduced. Sucrose at 150 millimolar in media lacking nitrogen markedly inhibited the accumulation of chlorophyll and light-harvesting chlorophyll a/b protein.