Do solar neutrinos decay?
Abstract
Despite the fact that the solar neutrino flux is now well-understood in the context of matter-affected neutrino mixing, we find that it is not yet possible to set a strong and model-independent bound on solar neutrino decays. If neutrinos decay into truly invisible particles, the Earth-Sun baseline defines a lifetime limit of $\tau/m \agt 10^{-4}$ s/eV. However, there are many possibilities which must be excluded before such a bound can be established. There is an obvious degeneracy between the neutrino lifetime and the mixing parameters. More generally, one must also allow the possibility of active daughter neutrinos and/or antineutrinos, which may partially conceal the characteristic features of decay. Many of the most exotic possibilities that presently complicate the extraction of a decay bound will be removed if the KamLAND reactor antineutrino experiment confirms the large-mixing angle solution to the solar neutrino problem and measures the mixing parameters precisely. Better experimental and theoretical constraints on the $^8$B neutrino flux will also play a key role, as will tighter bounds on absolute neutrino masses. Though the lifetime limit set by the solar flux is weak, it is still the strongest direct limit on non-radiative neutrino decay. Even so, there is no guarantee (by about eight orders of magnitude) that neutrinos from astrophysical sources such as a Galactic supernova or distant Active Galactic Nuclei will not decay.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: