Three-component model and tricritical points: A renormalization-group study. II. General dimensions and the three-phase monohedron
- 1 September 1981
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 24 (5) , 2825-2840
- https://doi.org/10.1103/physrevb.24.2825
Abstract
In Part I the global phase diagram of the general spin-1, nearest-neighbor, ferromagnetic Ising model was studied for dimensions using an approximate renormalization-group approach of the Migdal-Kadanoff type. Here general is considered with emphasis on expansions and on the variation of the tricritical exponents with . A dilution field is introduced which can be chosen to yield tricritical exponents for , in better agreement with more reliable estimates and conjectured exact results. The three-phase monohedra, which describe the densities of coexisting phases near a tricritical point, are calculated quantitatively for , and their shape contrasted with that predicted by classical theory: they are found, in particular, to be significantly flattened.
Keywords
This publication has 32 references indexed in Scilit:
- Three-component model and tricritical points: A renormalization-group study. Two dimensionsPhysical Review B, 1981
- First- and Second-Order Phase Transitions in Potts Models: Renormalization-Group SolutionPhysical Review Letters, 1979
- Tricriticality and the failure of scaling in the many-component limitPhysical Review B, 1978
- Notes on Migdal's recursion formulasAnnals of Physics, 1976
- Percolation problems and the Potts modelPhysics Letters A, 1976
- Phase diagrams and higher-order critical pointsPhysical Review B, 1975
- Exact renormalization group exhibiting tricritical fixed point for a spin-one Ising model in one dimensionPhysical Review B, 1975
- Equilibrium of three liquid phases and approach to the tricritical point in benzene-ethanol-water-ammonium sulfate mixturesPhysica A: Statistical Mechanics and its Applications, 1975
- Exact Renormalization Group Exhibiting a Tricritical Fixed Point for a Spin-1 Ising Model in One DimensionPhysical Review Letters, 1974
- Thermodynamic model for tricritical points in ternary and quaternary fluid mixturesThe Journal of Chemical Physics, 1974