The physics and technology of gallium antimonide: An emerging optoelectronic material
- 1 May 1997
- journal article
- conference paper
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 81 (9) , 5821-5870
- https://doi.org/10.1063/1.365356
Abstract
Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 1.55 m. The III–V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices. Consequently, there has been tremendous upthrust in research activities of GaSb-based systems. As a matter of fact, this compound has proved to be an interesting material for both basic and applied research. At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication. This article presents an up to date comprehensive account of research carried out hitherto. It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility. An overview of the lattice, electronic, transport, optical and device related properties is presented. Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed. These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc. Several avenues where further work is required in order to upgrade this III–V compound for optoelectronic devices are listed. It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication.
This publication has 304 references indexed in Scilit:
- Study of dislocation density in Te-doped GaSb single crystals grown by means of Czochralski techniqueThermochimica Acta, 1992
- Improved junction properties of Au-n-GaSb Schottky diodes after chemical modification of GaSb surfacesMaterials Letters, 1990
- Vertical gradient freeze growth and characterization of high quality GaSb single crystalsJournal of Crystal Growth, 1989
- Revision of the Kosicki-Paul model for resonant and bound states in n-GaSb(Se) from hydrostatic pressure measurementsSolid State Communications, 1976
- Influence of the linear k term on the shape of the isoenergetic surfaces in p-type GaSb, deduced from galvanomagnetic measurementsJournal of Physics and Chemistry of Solids, 1973
- Etude du coefficient de segregation du te dans le GaSbMaterials Research Bulletin, 1972
- Electron Mobility in GaSb at 77°KPhysical Review B, 1967
- Shubnikov-de Haas Effect in Lithium-Diffused Tellurium-Doped-Type Gallium AntimonidePhysical Review B, 1966
- Photoconductivity of Gallium AntimonidePhysical Review B, 1965
- Optical and Electrical Studies of Electron-Bombarded GaSbPhysical Review B, 1965