When Learning and Remembering Compete: A Functional MRI Study

Abstract
Recent functional neuroimaging evidence suggests a bottleneck between learning new information and remembering old information. In two behavioral experiments and one functional MRI (fMRI) experiment, we tested the hypothesis that learning and remembering compete when both processes happen within a brief period of time. In the first behavioral experiment, participants intentionally remembered old words displayed in the foreground, while incidentally learning new scenes displayed in the background. In line with a memory competition, we found that remembering old information was associated with impaired learning of new information. We replicated this finding in a subsequent fMRI experiment, which showed that this behavioral effect was coupled with a suppression of learning-related activity in visual and medial temporal areas. Moreover, the fMRI experiment provided evidence that left mid-ventrolateral prefrontal cortex is involved in resolving the memory competition, possibly by facilitating rapid switching between learning and remembering. Critically, a follow-up behavioral experiment in which the background scenes were replaced with a visual target detection task provided indications that the competition between learning and remembering was not merely due to attention. This study not only provides novel insight into our capacity to learn and remember, but also clarifies the neural mechanisms underlying flexible behavior. This study provides clear evidence for a bottleneck in our memory system between learning new and remembering old information. The ability to continuously learn and remember is usually taken for granted. Virtually all interactive situations we encounter require concurrent learning and remembering. For example, normal social communication requires that we process the new information that another person is providing. While listening, we are usually already retrieving information in preparation of an appropriate reply. Other examples include driving through an unfamiliar city while interpreting familiar traffic signs, or encountering novel products during shopping while remembering what we need. Although these examples clearly illustrate the importance of the simultaneous occurrence of learning and remembering, this study shows that remembering and learning compete for resources when both processes happen within a brief period. The study also examined the neural consequences of the competition between learning and remembering using functional MRI (fMRI). In line with the behavioral competition, the neuroimaging results showed a clear suppression of learning-related brain activity as a result of concurrent remembering. Finally, the study provides evidence that a specific region in the prefrontal cortex can resolve the bottleneck, possibly by allowing rapid switching between learning and remembering.