Lack of Interaction between Extreme High‐Temperature Events at Vegetative and Reproductive Growth Stages in Wheat

Abstract
Increased climatic variability and more frequent episodes of extreme conditions may result in crops being exposed to more than one extreme temperature event in a single growing season and could decrease crop yields to the same extent as changes in mean temperature. The developmental stage of the crop exposed to increased temperatures will determine the severity of possible damage experienced by the plant. It is not known whether or not the damaging effects of heat episodes occurring at different phenological stages are additive. In the present study, the interaction of high‐temperature events applied at the stages of double ridges and anthesis in Triticum aestivum (L.) cv. Chablis was investigated. Biomass accumulation of control plants and that of plants experiencing high temperatures during the double‐ridge stage were similar and were reduced by 40 % when plants were subjected to a heat event at anthesis. Grain number on the main and side tillers declined by 41 %, and individual grain weight declined by 45 % with heat stress applied at the double‐ridge stage and anthesis or at anthesis alone. The harvest index was reduced from 0.53 to 0.33. Nitrogen contents in leaves were reduced by 10 % at the double‐ridge stage and by 25 % at anthesis. The maximum rates of CO2 assimilation increased with heat stress at the double‐ridge stage and higher rates were maintained throughout the growing season. The results clearly indicate that an extreme heat event at the double‐ridge stage does not affect subsequent growth or the response of wheat to heat stress at anthesis.