Protein Kinase A–Mediated Phosphorylation of cMyBP-C Increases Proximity of Myosin Heads to Actin in Resting Myocardium

Abstract
Protein kinase A–mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I11/I10, in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C−/−) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I11/I10 (0.22±0.03 versus 0.33±0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I11/I10 between untreated and PKA-treated cMyBP-C−/− myoca...