Abstract
Infectious pancreatic necrosis virus exhibited an interference phenomenon that resulted in the survival of the infected cell with one hit kinetics. The responsible factor was found to co-purify with standard virus through a purification regime that employed two CsCl gradients and a sucrose gradient. This result suggested that a defective interfering (DI) viral particle was involved. It was possible to estimate the number of DI particles by a statistical method using the Poisson distribution that related cell survival to input DI/cell, which indicated that virus samples from dilute passage contained as many DI particles as samples from undiluted passage; this means that multiple undiluted virus passage did not increase the yield of DI particles. In isopycnic CsCl gradient centrifugation, the DI particles were found in a broad band superimposed over the standard virus peak and extending above it, such that the ratio DI/PFU varied from 0.3–20 in different fractions. These centrifugation methods did not completely separate DI particles from standard virus.