Relaxations semi-linéaire et cinétique des systèmes de lois de conservation
- 1 March 2000
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 17 (2) , 169-192
- https://doi.org/10.1016/s0294-1449(99)00105-5
Abstract
R. DiPerna (1983) proved the convergence of the approximate solutions given by the vanishing viscosity method, towards an entropy solution of the underlying hyperbolic system. He used two main assumptions: the existence of convex positively invariant domains (in the sense of K.N. Chuey et al. (1977)) and genuine nonlinearity. We prove below that, under the same assumptions together with the sub-characteristic condition, the approximate solutions given by the semi-linear relaxation converge too. Actually, our result stands for a more general approximation, first introduced by R. Natalini (1998). Résumé: R. DiPerna (1983) a montré la convergence de la solution approchée fournie par la méthode de viscosité, vers une solution entropique du système hyperbolique sous-jacent. Il a utilisé deux hypothèses fondamentales : l’existence de domaines convexes positivement invariants (au sens de K.N. Chuey et al. (1977)) et la non-linéarité des champs caractéristiques. Nous montrons ici que ces hypothèses, jointes à la condition sous-caractéristique, assurent aussi la convergence des solutions approchées fournies par la relaxation semi-linéaire. En fait, notre analyse est valide pour une classe plus générale d’approximations, introduites récemment par R. Natalini (1998).This publication has 13 references indexed in Scilit:
- A Discrete Kinetic Approximation of Entropy Solutions to Multidimensional Scalar Conservation LawsJournal of Differential Equations, 1998
- On the Rate of Convergence to Equilibrium for a System of Conservation Laws with a Relaxation TermSIAM Journal on Mathematical Analysis, 1997
- Convergence of the relaxation approximation to a scalar nonlinear hyperbolic equation arising in chromatographyZeitschrift für angewandte Mathematik und Physik, 1996
- The relaxation schemes for systems of conservation laws in arbitrary space dimensionsCommunications on Pure and Applied Mathematics, 1995
- Hyperbolic conservation laws with stiff relaxation terms and entropyCommunications on Pure and Applied Mathematics, 1994
- Existence and uniqueness of solutions for some hyperbolic systems of conservation lawsArchive for Rational Mechanics and Analysis, 1994
- Zero relaxation and dissipation limits for hyperbolic conservation lawsCommunications on Pure and Applied Mathematics, 1993
- Hyperbolic conservation laws with relaxationCommunications in Mathematical Physics, 1987
- Invariant regions for systems of conservation lawsTransactions of the American Mathematical Society, 1985
- Convergence of approximate solutions to conservation lawsArchive for Rational Mechanics and Analysis, 1983